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Abstract

Background—Crohn’s disease (CD) is a form of inflammatory bowel disease (IBD) with 

different described behaviors, including stricture. At present, there are no laboratory studies that 

can differentiate stricturing CD from other phenotypes of IBD. We performed a pilot study to 

examine differences in the proteome among patients with stricturing Crohn’s disease, non-

stricturing Crohn’s disease, and ulcerative colitis (UC).

Methods—Serum samples were selected from the Ocean State Crohn’s and Colitis Area Registry 

(OSCCAR), an established cohort of patients with IBD. Crohn’s disease patients with surgically-

resected stricture were matched with similar patients with Crohn’s disease without known 

stricture, and with UC. Serum samples from each patient were digested and analyzed using liquid 

chromatography-mass spectrometry to characterize the proteome. Statistical analyses were 

performed to identify peptides and proteins that can differentiate CD with stricture.
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Results—Samples from 9 patients in each group (27 total patients) were analyzed. Baseline 

demographic characteristics were similar among the three groups. We quantified 7668 peptides 

and 897 proteins for analysis. ROC analysis identified a subset of peptides with an area under the 

curve greater than 0.9, indicating greater separation potential. Partial least squares discriminant 

analysis was able to distinguish among the three groups with up to 70% accuracy by peptides, and 

up to 80% accuracy by proteins. We identified the significantly different proteins and peptides, 

and determined their function based on previously published literature.

Conclusions—The serum of patients with stricturing CD, non-stricturing CD, and UC are 

distinguishable via proteomic analysis. Some of the proteins that differentiate the stricturing 

phenotype have been implicated in complement activation, fibrinolytic pathways, and lymphocyte 

adhesion.
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Introduction

Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis 

(UC), is a chronic condition of the gastrointestinal tract that has the potential to cause 

significant morbidity. The etiology of IBD is not known, but is thought to be the result of 

interaction between host genotype(1, 2) and external factors, acting as potential 

environmental triggers(3). Diagnosis of this condition at present relies on clinical, 

laboratory, endoscopic, histopathologic, and radiologic information. While these data are 

typically reliable for making the diagnosis of IBD, in some cases it may be difficult to 

differentiate between UC and CD(4). Furthermore, both of these disorders have a variety of 

phenotypes in terms of disease location, extent, and behavior(5), which can significantly 

affect treatment decisions and patient outcomes. The behaviors commonly used in CD 

classification are penetrating and stricturing disease.

Crohn’s disease strictures can be divided into inflammatory and fibrotic subtypes. It is 

presumed that inflammatory strictures progress to fibrotic strictures and become resistant to 

medical therapy(6). If the degree of resulting stenosis is severe enough, patients develop 

acute or chronic bowel obstruction requiring surgical intervention. At this time there is no 

way to predict whether a patient will develop this type of complication.

Biomarkers have the potential to yield valuable information about disease behavior and 

activity, either in conjunction with or in place of more invasive techniques. However, 

researchers have had limited success at uncovering biomarkers that can reliably differentiate 

IBD patients from healthy controls, CD from UC, or predict disease course or treatment 

response(7). In the past, biomarker discovery has been limited to proteins and metabolites 

that are already suspected to be involved in IBD pathogenesis. More recently, the use of 

mass spectroscopy and bioinformatic techniques has permitted the rapid analysis of 

thousands of peptides and proteins from the same sample. The results from these data-driven 

studies have the potential to identify candidate biomarkers deserving further evaluation and 

new hypotheses for mechanistic investigation(8).
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The proteome is defined as the full complement of proteins encoded by a genome(9). 

Proteomics is the branch of systems biology examining the proteome, which seeks not only 

to catalog and quantify these proteins, but also to examine them in a holistic manner, 

capturing the full spectrum of protein forms and modifications, protein complexes, and 

interactions among them(10). Increasing knowledge of the proteome in health and in disease 

states has the potential to yield valuable insights into physiology and pathophysiology, as 

proteins are directly involved in nearly all physiologic processes. Their quantity and activity 

can vary markedly in different tissues, different stages of development, and illnesses(11, 

12). The nature of the proteome makes proteomic studies particularly useful for discovering 

novel biomarkers or identifying potential drug targets (13).

In this pilot study, we attempted to determine the feasibility of using serum protein 

expression profiles to differentiate among patients with UC, inflammatory Crohn’s disease, 

and Crohn’s disease with fibrotic stricture. We hypothesized that individuals with a 

stricturing phenotype will express different proteins from the other two groups, and that 

some of these proteins may play a role in the development of fibrosis. Our aim is to use the 

information from this study to generate novel candidate serum markers for further validation 

and new hypotheses for future studies on stricturing Crohn’s disease.

Materials and Methods

Sample selection

The Ocean State Crohn’s and Colitis Area Registry (OSCCAR) is a community-based 

inception cohort that consists of 408 adult and pediatric patients diagnosed with 

inflammatory bowel disease between 2008 and 2012 in the state of Rhode Island(14). 

Patients were enrolled within one year of diagnosis of IBD, and had serum collected and 

stored at −80°C in BD P100 (BD Diagnostics) sample tubes at the time of enrollment, as 

well as yearly thereafter. The Montreal classification (MC) system was used to describe 

disease phenotype at baseline(5). Disease location in Crohn’s disease was designated as L1 

(ileal), L2 (colonic), or L3 (ileocolonic) with L4 as a modifier designating concomitant 

upper tract disease. Upper tract disease (L4) was based on endoscopic findings of 

inflammation and ulceration proximal to the ligament of Treitz. Behavior was defined as B1 

(inflammatory, non-stricturing and non-penetrating), B2 (stricturing), or B3 (fistulizing/

penetrating) with a P modifier to describe concomitant perianal disease. Ulcerative colitis 

disease location was described as E1 (proctitis), E2 (left sided disease), or E3 (pancolitis). 

Classifications were based on all available endoscopic, radiographic and surgical data 

obtained within 3 months of IBD diagnosis. We selected patients in this cohort with Crohn’s 

disease who had an ileal resection for stricture, as described either on surgical report or 

pathology, as index patients. For each of these index patients, we matched two other patients 

from the cohort—one with Crohn’s disease but no stricture, and one with ulcerative colitis— 

based on age, gender, and medication exposure. For the index patients, we analyzed the 

serum sample drawn closest to the time of surgery. For the matched patients, we analyzed 

the sample drawn at the interval that best approximated the time from diagnosis to surgery 

for the index patient.
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Proteomic Sample Preparation

Each serum sample (200 μL) was subjected to immunoaffinity depletion to remove the top 

14 most abundant proteins using an IgY-14 LC5 column (Sigma-Aldrich) coupled with an 

Agilent 1100 series HPLC, under the conditions suggested by the manufacturer for mobile 

phases and flow rate. The flow-through fractions (low abundant proteins) were collected and 

concentrated in Amicon Ultra-15 concentrators (Millipore) with molecular weight cut off of 

3 kDa, followed by a buffer exchange to 50 mM NH4HCO3 in the same unit according to 

the manufacturer’s instructions. The low abundant proteins were next sequentially denatured 

with 8 M urea, reduced with 5 mM dithiothreitol, alkylated with 20 mM iodoacetamide, and 

digested with trypsin (Promega) at a trypsin/protein ratio of 1:50; the peptide mixtures were 

then cleaned with C18 SPE cartridges (Sigma-Aldrich) and dried in vacuo before isobaric 

labeling of peptides. For preparation of whole serum protein digest, 20 μL of each serum 

sample was directly digested and cleaned up following the same procedures as described 

previously for the low abundant proteins.

Aliquots of the 27 individually digested samples were pooled to create a universal reference 

sample, which was labeled using iTRAQ 4-plex reagents (AB SciEx), together with equal 

amount of peptides derived from 3 clinical matched samples (Strictured Crohn’s, Crohn’s 

and Ulcerative Colitis), according to the manufacturer recommendations. These 4 

individually iTRAQ labeled samples were then pooled to form one experiment; and in total 

9 experiments each were created for low abundant protein and whole serum protein digests, 

respectively. To avoid systematic errors from the labeling reagent, labeling was randomized 

within experiments. The pooled sample of each experiment was subjected to automated 

offline high pH reversed phase fractionation as reported previously(15), and 12 fractions 

were generated in the final concatenation process. Each fraction was dried and reconstituted 

in 0.1% formic acid for a final concentration of 0.1 μg/μL. In total, 108 fractionated peptide 

samples were subjected to LC-MS/MS instrument analysis for peptide samples originated 

from the whole serum proteins and low abundant proteins, respectively.

Instrument Analysis

Five μL of each fractionated peptide sample was separated on a 2-column custom-built 

capillary LC system similar as reported previously(16). Reversed-phase separations were 

carried out on 35cm × 75 μm i.d. fused silica columns packed in house using 3μ Jupiter C18 

particles (Phenomenex). Mobile phases consisted of 0.1% formic acid in water (A) and 0.1% 

formic acid in 100% acetonitrile (B) with a 100 min gradient. MS analyses were performed 

using an Orbitrap Velos Pro Hybrid mass spectrometer (ThermoScientific) outfitted with a 

custom electrospray ionization (ESI) interface, which was operated in data dependent 

MS/MS mode, with one high resolution (Resolution of 60,000 at 400 m/z) MS scan 

followed by HCD MS/MS scan events (resolution of 15,000 at 400 m/z) at normalized 

collision energy of 32.

Data Processing and Statistical Analysis

Protein identifications were performed using MSGF+ search engine against Uniprot 

database of human protein sequences (version of 2012-04-30) and the decoy database. 

Search parameters were set as follows: monoisotopic mass, peptide mass tolerance at ± 10 
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ppm and fragment mass tolerance at 0.1 Da, trypsin as the enzyme and allowing up to two 

missed cleavages. Lysine and N-term of peptides labeled by iTRAQ 4-plex and 

carbamidomethylation on cysteine were specified as fixed modifications, while oxidation of 

methionine was defined as variable modification. False discovery rate (FDR) of peptides 

identification was set to be < 1%. Protein identification was supported by at least one unique 

peptide identification. iTRAQ reporter ion intensities for identified peptides were extracted 

using MASIC (17).

Crosstab file that contains peptide ID and peptide abundance in each sample was imported 

to MatLab® for statistical analysis. The abundance ratio of each sample peptide to the 

reference pool peptide was log10 transformed and all samples were median centered for data 

normalization. Missing data were imputed using a Regularized Expectation Maximization 

(REM) algorithm. Peptides with a significant quantitative difference were calculated using 

repeated measures ANOVA with a Tukey post-hoc test. Partial least squares- discriminant 

analysis (PLS-DA) was employed as a supervised learning approach to evaluate the 

classification potential among the disease groups. PLS permits regression analysis of data 

sets that contain large numbers of variables compared to observations. Cross-validation was 

repeated 100 times to attain a robust estimate of the classification accuracy. The Area under 

a Receiver Operating Characteristic Curve (AUC) was also computed to look at the 

classification potential of each peptide for comparing between any two disease groups.

Significantly changed peptides in any of the analyses were correlated with the proteins from 

which they originate. The biological functions and the roles of these proteins in disease were 

derived from Uniprot.

Results

Patient characteristics

We analyzed three groups, each consisting of 9 patients. The three groups were similar in 

baseline characteristics (Table 1). Only 3 of the 9 CD patients with stricture resection were 

categorized as having the B2 (stricturing) phenotype by Montreal classification at 

enrollment. The one patient in the comparison CD group initially classified as B2 at 

diagnosis, has not had surgery 5 years after diagnosis, and has not been treated with a 

biologic agent.

Group pair comparison

We quantified 7668 peptides and 897 proteins through the iTRAQ-labeling proteomics 

method. Table 2 shows a summary of the AUC values for peptides found to be significantly 

different between any two of the three groups. All of the comparisons revealed similar 

numbers of significantly different peptides as identified by ANOVA. Only 16 peptides had 

AUC values >0.9 for differentiating between CD with stricture and CD without stricture. 

The proteins containing these peptides, and a brief description of their function, are listed in 

Table 3. There were 143 and 135 peptides with AUC values >0.9 separating UC from 

stricturing CD and CD without stricture, respectively.
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Partial least squares- discriminant analysis

Figures 1 and 2 show representative PLS-DA regression plots for the peptide and protein 

data, respectively. These figures show each of the IBD phenotypes segregating in the 

regression graph, indicating different protein profiles. Based on these models, we 

determined the classification accuracy using different numbers of latent variables. For the 

peptide dataset, we observed that the best models use only 2 or 3 PLS factors, and yield 65–

70% average accuracy. For the protein dataset, the best models also used 2 or 3 PLS factors, 

and yield 70–80% average accuracy.

Discussion

Our findings indicate that proteomic analysis by LC-MS is able to distinguish among 

patients with ulcerative colitis, non-stricturing Crohn’s disease, and stricturing Crohn’s 

disease. To our knowledge, correlating protein profile with IBD location, extent, or behavior 

represents novel findings.

As proteomics relates to IBD specifically, there are a number of studies that have attempted 

to gain insight into an aspect of IBD based on protein profiling(18–21). Nanni et al. found 

20 peaks of protein expression in the serum that distinguished between subjects with IBD 

and healthy controls with a high degree of accuracy(22). Subramanian et al. examined the 

serum of CD and UC patients, and identified 12 peaks of protein expression that 

differentiated between the two(23). Hatsugai et al. studied serum mononuclear cells 

specifically, finding 58 proteins that helped discriminate between CD and UC(24). Other 

researchers, such as M’Koma et al, have evaluated colonic tissue directly, finding that 

protein expression differentiated between inflamed and non-inflamed mucosa, and between 

UC and CD patients(25). These studies commonly found peaks of protein expression that 

did not correlate with known proteins. For instance, in the Hatsugai study, only 11 of the 58 

candidate proteins could be identified. Meuwis et al. performed a similar study to the above, 

using serum to distinguish among CD, UC, healthy controls, and other inflammatory 

conditions(26). Later, the Meuwis group also performed a pilot study to determine if 

proteome profiling could distinguish between those who did or did not respond to TNF-

antagonist therapy, identifying platelet aggregation factor 4 as a potential biomarker for 

predicting non-response(27).

Our study found many proteins and peptides that are differentially expressed among the 

three groups. The PLS-DA analysis examines all of the proteins found to be significantly 

different by ANOVA together, and shows that patients with fibrotic stricture may have a 

protein profile that distinguishes them from other patients with IBD (Fig 1 and 2). Table 2 

shows that many fewer peptides strongly differentiate between the two behaviors of CD than 

between UC and either phenotype of CD. The peptides with the greatest separation potential 

between stricturing and non-stricturing CD (see Table 3) are a much smaller set than those 

used in the PLS analysis, and may provide a more manageable list for targeting validation 

studies. Our study did not attempt to discern mechanisms by which these proteins may lead 

to fibrosis. Several of the proteins have multiple functions beyond those listed, and the role 

of these proteins in the pathogenesis of fibrotic strictures is not clear.
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While the proteome contains a potential wealth of information at the basic functional level 

of an individual, there are still significant technical hurdles in proteomics techniques. Mass 

spectrometry is able to analyze and quantify thousands of proteins at a time, based on a 

unique mass-to-charge (m/z) ratio. However, not all proteins can be properly identified 

based on m/z ratio alone(28), or linked with the gene that gives rise to it. Analyzing unique 

peptide strings may capture the same protein in different conformations, but inference of 

protein quantity from peptide quantity is not always precise(29). The range of protein 

quantity is wide, varying up to 9 orders of magnitude from the most to least abundant 

proteins, and many important proteins such as interleukins are on the lower end of that 

range. Taken as a whole, other studies have estimated that 75% of the entire protein mass 

consists of a few thousand “housekeeping proteins”, found in all cells or tissues and carrying 

out basic roles in cell structure and function(30). Individual proteins often have multiple 

roles in a cell, and frequently interact with other proteins to achieve those roles, so a change 

in one protein may only be relevant if certain other proteins have changed as well. Finally, 

researchers have struggled with reproducibility issues, as there is no single broadly-accepted 

technique for analyzing a proteome sample.

There are a number of limitations to our study beyond those common to proteomic studies as 

a whole. As a pilot study, the sample size from each group is small, due to the size of the 

starting cohort and strict definition of stricture used for inclusion. We know that the 

cumulative incidence of stricture increases with time, and some of the patients considered to 

have non-stricturing Crohn’s disease may have been developing a fibrotic stricture at the 

time of the blood draw. Some patients had a stricture at initial presentation, but did not have 

their serum collected until after a resection was already performed, which may change their 

protein profile. Finally, many factors may influence protein expression, and disease behavior 

alone may not have caused the variability seen in this group.

This study highlights the need for further research into the proteome for patients with 

inflammatory bowel disease. Future studies may analyze larger groups of patients to confirm 

these results, and may be able to refine our findings or identify additional candidate proteins 

for evaluation as biomarkers. Finally, validation studies will help to determine whether 

candidate proteins are able to function as useful biomarkers.
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Figure 1. 
PLS plot for the whole serum iTRAQ dataset with missing data for peptides imputed via 

regularized expectation maximization for analysis. This provides a visual representation of 

the separation among the groups via regression modeling, showing each phenotype 

clustering in a different area of the regression graph. S= stricturing Crohn’s, C= Crohn’s 

without stricture, U= ulcerative colitis.
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Figure 2. 
PLS plot for the whole serum iTRAQ dataset using only proteins with complete data. This 

provides a visual representation of the separation among the groups via regression modeling, 

showing each phenotype clustering in a different area of the regression graph. S= stricturing 

Crohn’s, C= Crohn’s without stricture, U= ulcerative colitis.
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Table 1

Summary of patient characteristics. Age and disease duration data were recorded at the time of blood draw. 

Montreal classification obtained at enrollment.

CD- confirmed fibrotic Stricture CD-Control UC

# of patients 9 9 9

Characteristics

Age in years, mean (range) 37 (8.8–78.1) 34.5 (7.1–66.6) 36.8 (10–74.9)

% Female 44 44 44

Duration of disease in months, mean (range) 11.6(0.8–27.1) 8.3(0.2–25.8) 12(1.3–25.4)

Montreal Classification

L1 4 4 N/A

L2 1 2 N/A

L3 4 3 N/A

L4* 2 3 N/A

B1 4 7 N/A

B2 3 1 N/A

B3 2 1 N/A

P* 0 1 N/A

E1 N/A N/A 1

E2 N/A N/A 4

E3 N/A N/A 4

*
Modifier designating concomitant upper tract and perianal disease
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Table 2

Results of the Area Under a Receiver Operating Curve analysis of peptides, separated by peptide analysis 

technique. This provides a summary of peptides that showed potential for differentiating between two groups. 

Significantly different peptides have ANOVA p-value of <0.05. See Table 3 for a description of the proteins 

differentiating stricturing CD from CD without stricture with AUC value >0.9. iTRAQ = Isobaric tags for 

relative and absolute quantitation (labeled peptides), WS = whole serum, DS = depleted serum

Patient Group Comparison Analysis method

Number of 
significantly different 

peptides between 
groups

Average AUC
Number of 

peptides with 
AUC >0.9

Stricturing Crohn’s vs Crohn’s without stricture
iTRAQ DS 192 0.68 8

iTRAQ WS 455 0.62 8

Stricturing Crohn’s vs ulcerative colitis
iTRAQ DS 188 0.72 15

iTRAQ WS 456 0.83 128

Crohn’s without stricture vs ulcerative colitis
iTRAQ DS 189 0.69 10

iTRAQ WS 456 0.83 125
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Table 3

List of proteins (based on peptide data in Table 2) that differentiate stricturing CD from CD without stricture 

with AUC value >0.9. Included are genes associated with the proteins, as well as brief description of protein 

function based on available literature.

Protein name Gene name Reported Functions

Alpha-2-macroglobulin A2M Multiple: TNF, IL-1, and IL-8 binding; platelet activation; extracellular matrix 
organization; negatively regulates complement activation(31)

L-lactate dehydrogenase B chain LDHB Catalyzes fermentation of pyruvate to lactate(32)

Calpain small subunit 1 CAPNS1 Thrombosis, extracellular matrix organization and disassembly(33, 34)

Mannose-binding protein C MBL2 Enhances phagocystosis, activates complement pathway(35)

Apolipoprotein B-100 APOB Component of chylomicrons, LDL, and VLDL(36)

CD5 antigen-like CD5L Inhibits apoptosis, regulates lymphocyte binding(37)

Serum albumin ALB Ubiquitous

Filamin-A FLNA Promotes actin branching and linking(38)

Uteroglobin SCGB1A1 Inhibits phospholipase A2, anti-inflammatory effects(39)

Bromodomain testis-specific protein BRDT Spermatogenesis(40)

Cathepsin D CTSD Endopeptidase activity; mutations linked with several cancers(41)

Proteasome subunit alpha type-7 PSMA7 Part of proteinase complex with broad activity(42)

Ceruloplasmin CP Binds copper, involved in iron transport(43)

Oncoprotein-induced transcript 3 protein OIT3 Unknown; may be involved in hepatocellular function(44)

Prothrombin F2 Coagulation; converts fibrinogen to fibrin(45)

Putative tenascin-XA TNXA Unknown
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